This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SYNTHESIS OF HETEROCYCLIC COMPOUNDS FROM DIPOTASSIUM 1,1-DIMERCAPTO-2,2-DICYANOETHYLENE

Lydia A. Suba^a; Peter G. Ruminski^a; John J. D'amico^a

^a Research Department, Monsanto Agricultural Products Company, St. Louis, Missouri

To cite this Article Suba, Lydia A. , Ruminski, Peter G. and D'amico, John J.(1984) 'SYNTHESIS OF HETEROCYCLIC COMPOUNDS FROM DIPOTASSIUM 1,1-DIMERCAPTO-2,2-DICYANOETHYLENE', Phosphorus, Sulfur, and Silicon and the Related Elements, 20: 3, 251-257

To link to this Article: DOI: 10.1080/03086648408077635 URL: http://dx.doi.org/10.1080/03086648408077635

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF HETEROCYCLIC COMPOUNDS FROM DIPOTASSIUM 1,1-DIMERCAPTO-2,2-DICYANOETHYLENE^{1,2}

LYDIA A. SUBA, PETER G. RUMINSKI and JOHN J. D'AMICO*

Monsanto Agricultural Products Company, Research Department, 800 N. Lindbergh Blvd., St. Louis, Missouri 63167

(Received April 2, 1984; in final form April 30, 1984)

The reaction of dipotassium 1,1-dimercapto-2,2-dicyanoethylene with 3-bromo-1-propyne, 3-chloro-3-methyl-1-propyne, 3-chloro-2,4-pentanedione, ethyl α -chloroacetoacetate or chloroacetone afforded novel heterocyclic compounds (1–5). Possible mechanisms and supporting NMR and mass spectra are discussed.

Dipotassium-1,1-dimercapto-2,2-dicyanoethylene was first prepared in 1950 by Edwards and Tendall³ but was not isolated. Brown⁴ in 1962 reported an elegant synthesis for this salt and also established its structure.

The chemistry of this salt has received comparatively little attention until 1962 when several publications appeared.⁵⁻¹⁵ This is surprising in view of the potential of this salt as a low-cost chemical intermediate.

We wish to report the synthesis of novel heterocyclic compounds derived from dipotassium-1,1-dimercapto-2,2-dicyanoethylene.

The reaction of the dipotassium salt with 3-bromo-1-propyne or 3-chloro-3-methyl-1-propyne afforded the monoalkylation product followed by cyclization to give (4-methylene-1,3-dithiolan-2-ylidene)propanedinitrile (1) and 2-cyano-2-(4-methyl-5-methylene-1,3-dithiolan-2-ylidene)acetamide (2), respectively. However, based on only elemental analysis and molecular weight data the six-membered heterocycle A had to be considered. The presence of the exocyclic methylene group in 1 and 2 was confirmed by the NMR spectral data and thus ruled out structure A. Moreover, the hydration of one of the cyano to amido group for 2 was also confirmed by the NMR data.

^{*}Author to whom all correspondence should be addressed.

(KS)
$$_2$$
=C(CN) $_2$ + XCHC=CH \rightarrow CH \rightarrow C

Moreover, the mass spectra data were in agreement for the proposed structures 1 and 2.

The reaction of the dipotassium salt with 3-chloro-2,4-pentanedione, ethyl α -chloroacetoacetate and chloroacetone afforded 2-[6-acetyl-4-(1-hydroxyethylidene)-5-methyl-4H-1,3-dithiin-2-ylidene]-2-cyanoacetamide (3), ethyl 2-(2-amino-1-cyano-2-oxoethylidene)-4-(ethoxyhydroxmethylene)-5-methyl-4H-1,3-dithiin-6-carboxylate (4) and 2-(6-acetyl-5-methyl-4H-1,3-dithiin-2-ylidene)-2-cyanoacetamide (5), respectively. [Reactions (3) and (4).]

$$(KS)_{2}C=C(CN)_{2} + 2 CH_{3}C-CH-CR
0 Cl 0 C2H5OH
25-30 °C CONH2

3, R = -CH3
4, R = -OCH2CH3

NMR (CDCl3), R = CH3, 3 NMR (CDCl3), R = -OCH2CH3, 4 (3)

$$\frac{ppm}{2.28; CH_{3}C} C -\frac{C}{2}C-\frac{CH}{3}$$
2.42; COCH₃ and C
2.36; CH₃C C
4.27; -OCH₂CH₃

17.43; HO-C
14.00; HO-C-$$

SCHEME 1

(KS)
$$_{2}$$
C=C (CN) $_{2}$ + 2 CH $_{3}$ CCH $_{2}$ Cl $_{2}$ CH $_{5}$ OH $_{2}$ CH $_{3}$ CH $_{3}$ CH $_{4}$ CH $_{3}$ CH $_{4}$ CH $_{5}$ CH $_{5}$ CH $_{2}$ CH $_{3}$ CH $_{5}$ CH $_{2}$ CH $_{3}$ CH $_{2}$ CH $_{3}$ CH $_{3}$ CH $_{4}$ CH $_{5}$ CH $_{5}$ CH $_{2}$ CH $_{3}$ CH $_{2}$ CH $_{3}$ CH $_{3}$ CH $_{4}$ CH $_{5}$ CH $_{2}$ CH $_{3}$ CH $_{3}$ CH $_{2}$ CH $_{3}$ CH $_{3}$ CH $_{4}$ CH $_{2}$ CH $_{3}$ CH $_{3}$ CH $_{3}$ CH $_{4}$ CH $_{4}$ CH $_{5}$ CH $_{$

The analysis, NMR and mass spectra were in agreement for the proposed structures 3, 4, and 5. The presence of the OH protons in 3 and 4 at 17.43 and 14.00 δ , respectively furnished evidence for the enol form instead of the keto structure. This large downfield shift in 3 and 4 is due to the presence of enol form and the deshielding effect of the sulfur atom in the ring. Moreover, the hydration of one of the cyano (C=N) to the amido (CONH₂) group for 3 and 4 was also based on the NMR data. The CONH₂ protons for 3 and 4 appeared at 6.71 and 5.80 δ , respectively. The proposed mechanisms for reactions 3 and 4 are depicted in Schemes 1 and 2, respectively. It is noteworthy that for reaction (2) monoalkylation is followed by cyclization whereas for reactions (3) and (4) dialkylation is followed by cyclization. In proposed Scheme 1, after dialkylation the addition of the carbonyl to the nitrile group furnished the heterocyclic anion. After protonation of this anion the nucleophilic attack of the R'S- anion occurred followed by ring opening and the

$$(KS)_{2}C=C(CN)_{2} + 2 CH_{2}CCH_{2}C1 \longrightarrow CH_{3}CCH_{2} \longrightarrow S C=C CN$$

$$H CH_{3} CH_{3} \longrightarrow S C=C CN$$

$$CH_{3} CH_{2} \longrightarrow CH_{3} CH_{2} \longrightarrow CN$$

$$CH_{3} CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} CH_{3} \longrightarrow C$$

SCHEME 2

TABLE I

	Empirical formula ^c	$C_{12}H_{12}N_2O_3S_2$	C ₁₄ H ₁₆ N ₂ O ₅ S ₂	$C_{10}H_{10}N_2O_2S_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M. (Rel. intensity)	296 (15)	356 (10)	254 (39)
	NMR, $\delta(\text{ppm})$ CDCl ₃ —Me ₄ Si	2.28 (s, 3, CH ₃ C OH	2.42 (s, 6, CO $\overline{\text{CH}}_3$ and $C = \overset{l}{\text{C}} - \overline{\text{CH}}_3$ 6.71 (br s, 2, $\overline{\text{CONH}}_2$) 17.43 (s, 1, HO—C) 1.26 and 1.30 (t, 6, $\overline{\text{OCH}}_2$ $\overline{\text{CH}}_3$) 2.36 (s, 3, $\overline{\text{CH}}_3$ $\overline{\text{C}}_2$	4.27 (q, 4, O CH ₂ CH ₃) 5.80 (br s, 2, CONH ₂) 14.00 (s, 1, HO—C) Insoluble in all solvents even DMSO
	Mp °C	182–183ª	114-115 ^b	220-222
	Crude % Yield	78	28	73
	æ	—CH ₃	-OCH2CH3	I
	N.	3	4	w

 $^{^4}Recrystallization$ from methyl cthyl ketone. bRecrystallization from ethyl alochol. cSatisfactory analytical data $(\pm 0.4\%)$ for C, H, N and S were reported.

conversion of one of the cyano to the amido group. The second cyclization occurred and is followed by the addition of the R'S⁻ anion to the carbonyl group. The elimination of the thioester (CH₃CSR') followed by the formation of the enol form

afforded 3 and 4. In proposed Scheme 2, after dialkylation cyclization occurred by the addition of the alpha methylene group to the carbonyl group. The hydration of one of the cyano to the amido group followed by the loss of water furnished 5.

EXPERIMENTAL SECTION

NMR spectra were obtained with a Varian T-60 NMR spectrometer. The chemical shifts are reported in δ , using tetramethylsilane as reference. All melting points were taken upon a Fisher-Johns block and are uncorrected. The electron impact mass spectra were determined with a Varian-MAT CH-7A mass spectrometer operating at an ionizing potential of 70 eV using the direct insertion probe technique with a source temperature of 250 °C.

(4-Methylene-1, 3-dithiolan-2-ylidene) propanedinitrile (1) and 2-Cyano-2-(4-methyl-5-methylene-1, 3-dithiolan-2-ylidene)-acetamide (2). To a stirring solution comprising 43.7 g (0.2 mol) of dipotassium 1,1-dimercapto-2,2-dicyanoethylene⁴ in 800 mL of water, 0.4 mol of 3-bromo-1-propyne or 3-chloro-3-methyl-1-propyne was added in one portion. The reaction mixture was stirred at 25-30 °C for 4 days. After the addition of 200 mL of ethyl ether stirring was continued for 15 min. The solid was collected by filtration, washed with water until neutral to litmus and air-dried at 50 °C. 1, mp 127-128 °C, and 2, mp 143-147 °C, were obtained 44 and 50% yield, respectively. 1 melted at 129-130 °C and 2 melted at 163-164 °C after recrystallization from ethyl acetate and isopropyl alcohol, respectively. 1, NMR (CDCl₃) δ 4.48 (m, 2, CH₂S); 5.53 and 5.71 (2 m, 2 C=CH₂); mass spectrum m/e (rel. intensity) 180 (49.10)(M⁺).

Anal. Calcd for $C_7H_4N_2S_2$: C, 46.64; H, 2.24; N, 15.54; S, 35.28. Found: C, 46.65; H, 2.24; N, 15.51; S, 35.51. **2**, NMR (Me₂SO-d₆) δ 1.51 (d, 3, CH—<u>CH</u>₃); 4.76 (q, 1, CH—<u>CH</u>₃); 5.48 (m, 2, C=CH₂); 7.47 (br s, 2, CONH₂); mass spectrum m/e (rel. intensity) 212 (22.45) (M⁺.).

Anal. Calcd for $C_8\tilde{H}_8N_2OS_2$: C, 45.25; H, 3.79; N, 13.19; S, 30.20. Found: C, 45.28; H, 3.82; N, 13.15; S, 30.14.

2-[6-Acetyl-4-(1-hydroxyethylidene)-5-methyl-4H-1,3-dithiin-2-ylidene]-2-cyanoacetamide (3); Ethyl 2-(2-amino-1-cyano-2-oxoethylidene)-4-(ethoxyhydroxymethylene)-5-methyl-4H-1,3-dithiin-6-carboxylate (4); 2-(6-Acetyl-5-methyl-4H-1,3-dithiin-2-ylidene)-2-cyanoacetamide (5). To a stirred solution (pH = 9) containing 43.7 g (0.2 mol) of dipossium 1,1-dimercapto-2,2-dicyanoethylene⁴ in 160 mL of water and 140 mL of ethyl alcohol, 0.4 mol of 3-chloro-2,4-pentanedione, ethyl α-chloroacetoacetate or chloroacetone was added in one portion. An exothermic reaction set in causing a temperature rise from 25° to about 53°C. The reaction mixture was stirred at 25–30°C for 3 days (pH = 4–5). After the addition of 150 mL of ethyl ether, the reaction mixture was stirred at 0–10°C for 30 min. The solid was collected by filtration, washed with water until neutral to litmus and air-dried at 25–30°C. The data are summarized in Table I.

REFERENCES AND NOTES

- 1. Presented at the ACS 39th Northwest Regional Meeting, Organic Division in Moscow, Idaho.
- The Chemical Abstracts preferred name for compounds 1-5 was kindly furnished by Dr. K. L. Loening of the Chemical Abstracts Service.
- H. D. Edwards and J. D. Kendall, U.S. Patents 2,493,071 dated 1-3-50 and 2,533,233 dated 12/12/50 (Ilford Limited).
- 4. M. Brown, U.S. Patent 3,057,875 dated 10-9-62 (DuPont Co.).
- 5. W. R. Hatchard, U.S. Patent 3,048,596 dated 8-7-62 (DuPont Co.).
- 6. R. D. Vest, U.S. Patent 3,197,472 dated 7-27-65 (DuPont Co.).
- 7. D. C. Dittmer, H. E. Simmons and R. D. Vest, J. Org. Chem., 29, 497 (1964).
- 8. W. R. Hatchard, U.S. Patent 3,232,935 dated 2-1-66 (DuPont Co.).

- 9. A. Joos, U.S. Patent 3,723,498 dated 3-27-73.
- 10. J. J. D'Amico, U.S. Patent 3,776,891 dated 12-4-73 (Monsanto Co.).11. J. D'Amico, U.S. Patent 3,776,891 dated 12-30-75 (Monsanto Co.).

- R. Gompper and W. Topfl, Chem. Ber., 12, 2861 (1962).
 R. Gompper and W. Topfl, Chem. Ber., 12, 2871 (1962).
 R. Gompper and W. Topfl, Chem. Ber., 12, 2881 (1962).
- 15. W. L. Mosby, U.S. Patent 3,429,895 dated 2-25-69 (American Cyanamid Co.).